LLM-Agent场景题:贷款审批
摘要
本方案提出一个基于大型语言模型(LLM)和检索增强生成(RAG)的小企业贷款风险评估智能系统,通过多智能体(Multi-Agent)协作架构,实现贷款申请的自动化分析、风险评估和决策建议生成。系统整合传统信用评分模型与先进AI技术,显著提升贷款决策的效率、准确性和透明度,同时确保合规性和公平性。
一、系统架构概览
核心架构组件
多Agent协作框架:基于LangGraph构建的协作网络,实现不同功能智能体间的有序交互
RAG知识库系统:多层级、多向量的知识库架构,支持领域专业知识检索与应用
数据处理管道:处理结构化与非结构化金融数据的流水线系统
风险评估引擎:融合传统信用模型与LLM分析能力的混合风险评估机制
决策生成与解释系统:生成可解释的贷款决策建议,提供透明的评估依据
技术栈选择
±------------------±------------------±-----------------+
| 功能层 | 技术选择 | 备注 |
±------------------±------------------±-----------------+
| 框架基础 | LangChain | 灵活组合AI组件 |
| | LangGraph | 多Agent协作流编排 |
±------------------±------------------±-----------------+
| 基础模型 | Azure OpenAI | 企业级合规部署 |
| | Qwen-Max | 中文处理能力优秀 |
±------------------±------------------±-----------------+
| 向量数据库 | Pinecone/Qdrant | 支持混合检索策略 |
±------------------±------------------±-----------------+
| 嵌入模型 | BGE-Large-zh | 优秀的中文嵌入效果 |
±------------------±------------------±-----------------+
| 数据处理 | LangChain Doc Proc| 文档处理工具包 |
| | Unstructured | 非结构化数据解析 |
±------------------±------------------±-----------------+
| 监控与追踪 | LangSmith | 全流程监控追踪 |
±------------------±------------------±-----------------+
二、多Agent协作系统详解
Agent网络架构
系统采用LangGraph构建有向无环图(DAG)形式的Agent协作网络,实现信息流动和决策流程的可控性:
各Agent功能定义
协调Agent (Coordinator)
统筹整个评估流程,分发任务,整合各Agent输出
处理异常情况和决策冲突
维护评估流程的状态和进度
数据获取Agent (Data Acquisition)
从贷款申请表和相关文件中提取关键信息
识别缺失数据并提出补充需求
将提取的数据标准化为系统内部格式
信用评估Agent (Credit Analysis)
分析信用报告和历史记录
评估借款人的信用评分和趋势
识别信用记录中的异常模式和风险信号
财务分析Agent (Financial Analysis)
分析企业财务报表和现金流状况
计算关键财务比率和健康指标
评估企业的盈利能力和财务稳定性
市场分析Agent (Market Analysis)
评估企业所在行业的发展趋势和市场环境
分析宏观经济因素对企业的影响
考量行业竞争格局和企业市场定位
反欺诈Agent (Fraud Detection)
识别可疑的交易模式和异常数据
验证提供信息的一致性和真实性
生成欺诈风险评分和警报
合规检查Agent (Compliance)
确保评估流程符合相关法规和政策
检查决策过程中的偏见和歧视因素
生成合规性报告
决策合成Agent (Decision Synthesis)
整合各Agent的分析结果
生成最终风险评估报告和决策建议
提供决策依据和解释
沟通Agent (Communication)
生成客户友好的报告和反馈
准备内部评审文档
处理后续交互和问题回答
Agent协作流程
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 graph TD A[申请接收] --> B[协调Agent初始化] B --> C[数据获取Agent] C --> D[数据验证与预处理] D --> E{数据完整性检查} E -->|不完整| F[请求补充数据] F --> C E -->|完整| G[并行分析启动] G --> H1[信用评估Agent] G --> H2[财务分析Agent] G --> H3[市场分析Agent] G --> H4[反欺诈Agent] H1 --> I[分析结果汇总] H2 --> I H3 --> I H4 --> I I --> J[合规检查Agent] J --> K[决策合成Agent] K --> L[风险评估报告] L --> M[沟通Agent] M --> N[生成反馈与解释]
三、RAG系统设计
知识库架构
系统采用多层级知识库架构,满足不同类型知识检索需求:
一级知识库:行业与政策知识
贷款政策法规条例
行业分析报告与指标标准
经济环境与市场趋势分析
二级知识库:风险评估指南
信用风险评估方法论
财务风险评估标准与指标
风险评分模型与解释文档
案例库与决策先例
三级知识库:操作指南
Agent操作流程和标准
异常处理与上报规则
数据解释与处理指南
索引与检索策略
混合检索技术
结合关键词检索(BM25)与向量检索的混合方法
对索引数据采用动态alpha值调整策略(0.2-0.8范围)
基于查询内容智能选择检索策略
多向量检索
为每个文档创建多种表示向量:
原始文档向量
摘要向量
假设问题向量(HyDE)
支持查询扩展与多路检索
重排序机制
采用BGE-reranker-large对初始检索结果重排
结合内容相关度与权威性的评分机制
支持基于上下文的智能过滤
RAG优化技术
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 +------------------+----------------------+---------------------+ | 优化方向 | 采用技术 | 预期效果 | +------------------+----------------------+---------------------+ | 查询理解 | 步退提示(Step Back) | 提高抽象理解能力 | | | 多查询扩展 | 提高覆盖范围 | +------------------+----------------------+---------------------+ | 检索质量 | 混合检索 | 平衡精确与相关性 | | | 上下文感知重排序 | 提高指令的相关度 | +------------------+----------------------+---------------------+ | 文档处理 | 递归分块策略 | 保持语义完整性 | | | 句子窗口检索 | 丰富上下文环境 | +------------------+----------------------+---------------------+ | 知识整合 | LLM引导的知识合成 | 减少知识冗余 | | | 摘要压缩 | 降低内容复杂度 | +------------------+----------------------+---------------------+ | 偏见控制 | 多模型交叉验证 | 减少单一模型偏见 | | | 引导Prompt设计 | 控制偏见传播 | +------------------+----------------------+---------------------+
四、数据处理流程
总体架构
基于RAG技术和多Agent协作的数据预处理流程,主要分为四个主要阶段:数据接入、数据解析与标准化、特征提取与增强、数据存储与索引。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 digraph PreprocessingFlow { rankdir=TB; node [shape=box, style=filled, color=skyblue]; subgraph cluster_0 { label="数据接入层"; style=filled; color=lightgrey; node [style=filled, color=white]; DataIngestion [label="多源异构数据接入"]; ValidityCheck [label="数据有效性检查"]; DataParallelize [label="数据并行化处理"]; } subgraph cluster_1 { label="数据解析与标准化层"; style=filled; color=lightcyan; node [style=filled, color=white]; StructuredDataParsing [label="结构化数据解析"]; UnstructuredTextParsing [label="非结构化文本解析"]; DataCleansing [label="数据清洗"]; DataNormalization [label="数据标准化"]; } subgraph cluster_2 { label="特征提取与增强层"; style=filled; color=lightsalmon; node [style=filled, color=white]; FeatureExtraction [label="金融特征提取"]; TimeSeriesAnalysis [label="时间序列分析"]; TextualFeatures [label="文本特征提取"]; DataEnrichment [label="数据增强"]; } subgraph cluster_3 { label="数据存储与索引层"; style=filled; color=lightgreen; node [style=filled, color=white]; DataChunking [label="自适应分块"]; VectorEmbedding [label="向量嵌入"]; MetadataGeneration [label="元数据生成"]; VectorStorage [label="向量数据存储"]; } // 连接 DataIngestion -> ValidityCheck -> DataParallelize; DataParallelize -> StructuredDataParsing; DataParallelize -> UnstructuredTextParsing; StructuredDataParsing -> DataCleansing; UnstructuredTextParsing -> DataCleansing; DataCleansing -> DataNormalization; DataNormalization -> FeatureExtraction; DataNormalization -> TimeSeriesAnalysis; DataNormalization -> TextualFeatures; FeatureExtraction -> DataEnrichment; TimeSeriesAnalysis -> DataEnrichment; TextualFeatures -> DataEnrichment; DataEnrichment -> DataChunking; DataChunking -> VectorEmbedding; VectorEmbedding -> MetadataGeneration; MetadataGeneration -> VectorStorage; }
1.1 多源异构数据接入
个人消费记录接入
• 支持多种格式接入:CSV、Excel、JSON、银行API导出文件
• 自动检测分隔符和编码格式
• 数据源元信息记录:来源、更新时间、数据版本
商家经营数据接入
• 支持标准财务报表格式:资产负债表、利润表、现金流量表
• 行业分类自动标记
• 支持结构化数据库接口和API集成
亲友信息表格接入
• 严格权限控制与访问记录
• 数据来源合法性验证
• 敏感数据自动识别和初步脱敏标记
专家案例文本接入
• 支持PDF、Word、HTML等格式
• 基于文档结构的自动分段
• OCR处理图片中嵌入的文本信息
1.2 数据有效性检查
数据完整性验证
• 必填字段检查:确保核心数据字段存在
• 数据量验证:确保数据量满足最低分析要求
• 日期范围验证:确保数据的时效性
格式有效性检查
• 数值型字段格式验证
• 日期格式标准化检查
• 文本编码一致性检查
业务规则验证
• 金额范围合理性检查
• 交易频率合理性检查
• 基本业务逻辑验证
1.3 数据并行化处理
数据分片策略
• 基于数据量自适应分片
• 时间序列数据的时间窗口分片
• 文本数据的自然段落分片
分布式处理框架
• 支持Spark/Dask等分布式计算框架
• 任务优先级调度
• 处理进度监控与失败重试机制
2.1 结构化数据解析
2.1.1 个人消费记录解析
数据结构化处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 def parse_consumption_record (data_source ): file_format = detect_file_format(data_source) if file_format == 'csv' : data = pd.read_csv(data_source, parse_dates=['transaction_date' ]) elif file_format == 'excel' : data = pd.read_excel(data_source, parse_dates=['transaction_date' ]) elif file_format == 'json' : data = pd.read_json(data_source) data['transaction_date' ] = pd.to_datetime(data['transaction_date' ]) data = standardize_column_names(data, consumption_schema) validate_consumption_structure(data) return data
字段标准化映射
1 2 3 4 5 6 7 8 9 10 标准字段映射 = { '交易日期/时间': 'transaction_date', '消费金额': 'amount', '交易类型': 'transaction_type', '商户名称': 'merchant_name', '消费类别': 'category', '支付方式': 'payment_method', '交易状态': 'status', '交易位置': 'location' }
2.1.2 商家经营数据解析
财务数据标准化
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 def parse_business_data (data_source ): report_type = identify_financial_report_type(data_source) if report_type == 'balance_sheet' : data = parse_balance_sheet(data_source) elif report_type == 'income_statement' : data = parse_income_statement(data_source) elif report_type == 'cash_flow' : data = parse_cash_flow_statement(data_source) else : data = parse_general_business_data(data_source) data = calculate_financial_ratios(data) data = add_industry_benchmarks(data) return data
行业代码映射
• 建立标准行业分类代码映射表
• 对接国家统计局行业分类标准
• 支持多级行业代码自动识别与分配
2.1.3 亲友信息解析
关系数据处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 def parse_relatives_data (data_source ): data = load_sensitive_data(data_source, encryption_keys) compliance_status = check_compliance_requirements(data) if not compliance_status.is_compliant: log_compliance_issue(compliance_status) data = apply_compliance_restrictions(data, compliance_status) relationship_graph = build_relationship_graph(data) tagged_relationships = tag_relationships(relationship_graph) return { 'data' : data, 'compliance_status' : compliance_status, 'relationship_graph' : relationship_graph, 'tagged_relationships' : tagged_relationships }
隐私保护措施
• 个人身份信息(PII)识别与脱敏
• 基于角色的访问控制标记
• 数据使用目的限制标签
2.2 非结构化文本解析
2.2.1 专家案例文本解析
文档结构化处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 def parse_expert_case (document_path ): doc_format = detect_document_format(document_path) text_content = convert_to_text(document_path, doc_format) doc_structure = identify_document_structure(text_content) sections = extract_document_sections(text_content, doc_structure) key_information = extract_key_information(sections) entities = extract_named_entities(text_content) summary = generate_document_summary(text_content) return { 'full_text' : text_content, 'sections' : sections, 'key_information' : key_information, 'entities' : entities, 'summary' : summary }
文本结构识别规则
• 标题层级识别规则
• 案例分隔标记识别
• 关键分析部分识别模式
2.3 数据清洗
通用数据清洗策略
• 缺失值处理:基于业务规则和统计推断
• 异常值检测与处理:基于Z-分数、IQR或领域规则
• 重复数据检测与处理
• 数据一致性检查与修正
领域特定清洗规则
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 def clean_financial_data (data ): data = process_negative_values(data) data = standardize_monetary_units(data) data = handle_financial_outliers(data) data = impute_missing_financial_indicators(data) return data
文本数据清洗
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 def clean_text_data (text_data ): cleaned_text = remove_html_tags(text_data) cleaned_text = normalize_whitespace(cleaned_text) cleaned_text = handle_special_characters(cleaned_text) cleaned_text = correct_common_misspellings(cleaned_text) cleaned_text = remove_non_informative_content(cleaned_text) return cleaned_text
2.4 数据标准化
数值型数据标准化
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 def normalize_numerical_data (dataframe, normalization_type='z-score' ): normalized_df = dataframe.copy() numerical_columns = dataframe.select_dtypes(include=['int64' , 'float64' ]).columns if normalization_type == 'z-score' : for col in numerical_columns: mean = dataframe[col].mean() std = dataframe[col].std() normalized_df[col] = (dataframe[col] - mean) / std elif normalization_type == 'min-max' : for col in numerical_columns: min_val = dataframe[col].min () max_val = dataframe[col].max () normalized_df[col] = (dataframe[col] - min_val) / (max_val - min_val) elif normalization_type == 'robust' : for col in numerical_columns: median = dataframe[col].median() q1 = dataframe[col].quantile(0.25 ) q3 = dataframe[col].quantile(0.75 ) iqr = q3 - q1 normalized_df[col] = (dataframe[col] - median) / iqr return normalized_df
类别型数据标准化
• 统一编码方案设计(如消费类别、交易类型)
• 层级类别标准化(如行业分类)
• 自定义编码映射表维护与更新机制
时间数据标准化
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 def normalize_datetime_data (df, datetime_cols ): df_normalized = df.copy() for col in datetime_cols: df_normalized[col] = pd.to_datetime(df[col], errors='coerce' ) df_normalized[f'{col} _year' ] = df_normalized[col].dt.year df_normalized[f'{col} _month' ] = df_normalized[col].dt.month df_normalized[f'{col} _day' ] = df_normalized[col].dt.day df_normalized[f'{col} _dayofweek' ] = df_normalized[col].dt.dayofweek df_normalized[f'{col} _quarter' ] = df_normalized[col].dt.quarter df_normalized[f'{col} _is_weekend' ] = df_normalized[col].dt.dayofweek >= 5 df_normalized[f'{col} _is_month_start' ] = df_normalized[col].dt.is_month_start df_normalized[f'{col} _is_month_end' ] = df_normalized[col].dt.is_month_end return df_normalized
3. 特征提取与增强层
3.1 金融特征提取
个人消费特征提取
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 def extract_consumption_features (consumption_data ): features = {} features['total_spending' ] = consumption_data['amount' ].sum () features['avg_transaction_amount' ] = consumption_data['amount' ].mean() features['max_transaction_amount' ] = consumption_data['amount' ].max () features['transaction_count' ] = len (consumption_data) category_distribution = consumption_data.groupby('category' )['amount' ].sum () features['category_distribution' ] = category_distribution.to_dict() date_range = (consumption_data['transaction_date' ].max () - consumption_data['transaction_date' ].min ()).days features['transaction_frequency' ] = len (consumption_data) / max (date_range, 1 ) essential_categories = ['groceries' , 'utilities' , 'healthcare' , 'housing' ] essential_spending = consumption_data[consumption_data['category' ].isin( essential_categories)]['amount' ].sum () features['essential_spending_ratio' ] = essential_spending / features['total_spending' ] features['spending_volatility' ] = consumption_data.groupby( consumption_data['transaction_date' ].dt.month)['amount' ].sum ().std() monthly_spending = consumption_data.groupby( consumption_data['transaction_date' ].dt.month)['amount' ].sum () features['monthly_spending_pattern' ] = monthly_spending.to_dict() return features
商家经营特征提取
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 def extract_business_financial_features (business_data ): features = {} features['profit_margin' ] = business_data['net_income' ] / business_data['revenue' ] features['return_on_assets' ] = business_data['net_income' ] / business_data['total_assets' ] features['gross_margin' ] = (business_data['revenue' ] - business_data['cost_of_goods_sold' ]) / business_data['revenue' ] features['current_ratio' ] = business_data['current_assets' ] / business_data['current_liabilities' ] features['quick_ratio' ] = (business_data['current_assets' ] - business_data['inventory' ]) / business_data['current_liabilities' ] features['inventory_turnover' ] = business_data['cost_of_goods_sold' ] / business_data['average_inventory' ] features['asset_turnover' ] = business_data['revenue' ] / business_data['total_assets' ] features['debt_to_equity' ] = business_data['total_liabilities' ] / business_data['total_equity' ] features['interest_coverage' ] = business_data['ebit' ] / business_data['interest_expense' ] features['revenue_growth' ] = calculate_growth_rate(business_data['revenue' ]) features['profit_growth' ] = calculate_growth_rate(business_data['net_income' ]) features['operating_cash_flow_ratio' ] = business_data['operating_cash_flow' ] / business_data['current_liabilities' ] features['cash_flow_to_debt' ] = business_data['operating_cash_flow' ] / business_data['total_debt' ] return features
3.2 时间序列分析
时间序列分解
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 def decompose_time_series (time_series_data, date_column, value_column ): ts_data = time_series_data.set_index(date_column)[value_column] from statsmodels.tsa.seasonal import seasonal_decompose try : result = seasonal_decompose(ts_data, model='additive' ) decomposition = { 'trend' : result.trend, 'seasonal' : result.seasonal, 'residual' : result.resid, 'observed' : result.observed } except : decomposition = { 'trend' : calculate_rolling_average(ts_data), 'volatility' : calculate_volatility(ts_data), 'observed' : ts_data } return decomposition
消费模式检测
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 def detect_consumption_patterns (consumption_data ): patterns = {} daily_spending = consumption_data.groupby(consumption_data['transaction_date' ].dt.date)['amount' ].sum () from statsmodels.tsa.stattools import acf acf_values = acf(daily_spending, nlags=30 ) significant_lags = [i for i, value in enumerate (acf_values) if abs (value) > 0.2 ] if 7 in significant_lags: patterns['weekly_pattern' ] = True if any (lag in significant_lags for lag in [28 , 29 , 30 , 31 ]): patterns['monthly_pattern' ] = True mean_spending = daily_spending.mean() std_spending = daily_spending.std() anomaly_days = daily_spending[abs (daily_spending - mean_spending) > 2 * std_spending] patterns['spending_anomalies' ] = anomaly_days.to_dict() return patterns
趋势分析与预测
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 def analyze_financial_trends (financial_data, time_column, target_columns ): trend_analysis = {} for column in target_columns: time_series = financial_data[[time_column, column]].dropna() if len (time_series) >= 30 : from statsmodels.tsa.arima.model import ARIMA try : model = ARIMA(time_series[column], order=(1 , 1 , 1 )) model_fit = model.fit() forecast = model_fit.forecast(steps=3 ) trend_analysis[column] = { 'historical_data' : time_series[column].to_dict(), 'forecast_next_3_periods' : forecast.to_dict(), 'model_summary' : model_fit.summary() } except : trend_analysis[column] = calculate_linear_trend(time_series, column) else : trend_analysis[column] = calculate_linear_trend(time_series, column) return trend_analysis
3.3 文本特征提取
关键信息提取
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 def extract_key_information_from_text (text ): import spacy nlp = spacy.load("zh_core_web_trf" ) doc = nlp(text) entities = { 'PERSON' : [], 'ORG' : [], 'DATE' : [], 'MONEY' : [], 'PERCENT' : [], 'GPE' : [] } for ent in doc.ents: if ent.label_ in entities: entities[ent.label_].append({ 'text' : ent.text, 'start' : ent.start_char, 'end' : ent.end_char }) from keybert import KeyBERT kw_model = KeyBERT() keywords = kw_model.extract_keywords(text, keyphrase_ngram_range=(1 , 3 ), top_n=10 ) from summa import summarizer summary = summarizer.summarize(text, ratio=0.2 ) return { 'entities' : entities, 'keywords' : keywords, 'summary' : summary }
情感分析与风险评估
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 def analyze_text_sentiment_and_risk (text ): from transformers import pipeline sentiment_analyzer = pipeline("sentiment-analysis" , model="uer/roberta-base-finetuned-jd-binary-chinese" ) sentiment_result = sentiment_analyzer(text) risk_terms = ['违约' , '拖欠' , '破产' , '诉讼' , '失信' , '高负债' , '资金链断裂' , '监管处罚' ] risk_mentions = {} for term in risk_terms: if term in text: import re context_matches = re.finditer(f".{{0,50}}{term} .{{0,50}}" , text) risk_mentions[term] = [match .group(0 ) for match in context_matches] risk_score = len (risk_mentions) * 10 if sentiment_result[0 ]['label' ] == 'negative' : risk_score += sentiment_result[0 ]['score' ] * 50 return { 'sentiment' : sentiment_result, 'risk_mentions' : risk_mentions, 'risk_score' : risk_score }
3.4 数据增强
交叉特征生成
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 def generate_cross_features (personal_data, business_data=None , relatives_data=None ): cross_features = {} if 'credit_history' in personal_data and 'consumption_patterns' in personal_data: cross_features['consumption_credit_correlation' ] = calculate_correlation( personal_data['consumption_patterns' ]['monthly_spending' ], personal_data['credit_history' ]['monthly_payment_history' ] ) if business_data is not None : if 'consumption_amount' in personal_data and 'revenue' in business_data: cross_features['consumption_to_revenue_ratio' ] = ( personal_data['consumption_amount' ] / business_data['revenue' ] ) if relatives_data is not None and is_compliant_to_use(relatives_data): if 'emergency_contacts' in relatives_data: cross_features['emergency_contact_stability' ] = calculate_emergency_contact_stability( relatives_data['emergency_contacts' ] ) return cross_features
领域知识增强
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 def enhance_with_domain_knowledge (features, domain='consumer_finance' ): enhanced_features = features.copy() if domain == 'consumer_finance' : if 'debt_to_income_ratio' in features: if features['debt_to_income_ratio' ] < 0.36 : enhanced_features['dti_risk_level' ] = 'low' elif features['debt_to_income_ratio' ] < 0.43 : enhanced_features['dti_risk_level' ] = 'medium' else : enhanced_features['dti_risk_level' ] = 'high' if all (k in features for k in ['savings_rate' , 'essential_spending_ratio' , 'credit_utilization' ]): enhanced_features['financial_health_index' ] = calculate_financial_health_index( features['savings_rate' ], features['essential_spending_ratio' ], features['credit_utilization' ] ) elif domain == 'small_business' : if all (k in features for k in ['current_ratio' , 'debt_to_equity' , 'profit_margin' ]): enhanced_features['business_viability_score' ] = calculate_business_viability( features['current_ratio' ], features['debt_to_equity' ], features['profit_margin' ] ) return enhanced_features
4. 数据存储与索引层
4.1 自适应分块
智能分块策略
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 def chunk_data_intelligently (data, data_type ): chunks = [] if data_type == 'financial_record' : chunks = chunk_by_financial_period(data) elif data_type == 'consumption_record' : chunks = chunk_by_consumption_pattern(data) elif data_type == 'expert_text' : chunks = chunk_text_by_semantic_units(data) chunks = apply_recursive_chunking(chunks) chunks = ensure_semantic_integrity(chunks) return chunks
多粒度分块机制
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 def create_multi_granularity_chunks (text_data ): large_chunks = split_text_into_chunks(text_data, chunk_size=2000 , overlap=200 ) medium_chunks = split_text_into_chunks(text_data, chunk_size=500 , overlap=100 ) small_chunks = split_text_into_chunks(text_data, chunk_size=150 , overlap=30 ) chunk_hierarchy = build_chunk_hierarchy(large_chunks, medium_chunks, small_chunks) return { 'large_chunks' : large_chunks, 'medium_chunks' : medium_chunks, 'small_chunks' : small_chunks, 'hierarchy' : chunk_hierarchy }
4.2 向量嵌入
多模型嵌入策略
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 def create_embeddings (chunks, embedding_models=None ): if embedding_models is None : embedding_models = { 'primary' : 'BAAI/bge-large-zh' , 'backup' : 'shibing624/text2vec-base-chinese' } from sentence_transformers import SentenceTransformer primary_model = SentenceTransformer(embedding_models['primary' ]) backup_model = SentenceTransformer(embedding_models['backup' ]) embeddings = {} try : embeddings['primary' ] = primary_model.encode( [chunk['text' ] for chunk in chunks], batch_size=32 , show_progress_bar=True ) except Exception as e: print (f"Primary model encoding failed: {e} " ) try : embeddings['backup' ] = backup_model.encode( [chunk['text' ] for chunk in chunks], batch_size=32 , show_progress_bar=True ) except Exception as e: print (f"Backup model encoding failed: {e} " ) if 'primary' not in embeddings and 'backup' not in embeddings: raise ValueError("All embedding models failed" ) return embeddings
特殊内容处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 def embed_special_content (chunks ): embeddings = {} table_chunks = [chunk for chunk in chunks if is_table_chunk(chunk)] numerical_chunks = [chunk for chunk in chunks if is_numerical_chunk(chunk)] if table_chunks: table_embeddings = generate_table_embeddings(table_chunks) embeddings['table_embeddings' ] = table_embeddings if numerical_chunks: numerical_embeddings = generate_numerical_embeddings(numerical_chunks) embeddings['numerical_embeddings' ] = numerical_embeddings return embeddings
4.3 元数据生成
元数据提取与标准化
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 def generate_metadata (chunks, original_data_source ): metadata = [] for i, chunk in enumerate (chunks): chunk_metadata = { 'chunk_id' : f"{original_data_source['id' ]} _{i} " , 'source_type' : original_data_source['type' ], 'creation_date' : original_data_source.get('date' ), 'last_modified' : original_data_source.get('last_modified' ), 'chunk_position' : i, 'total_chunks' : len (chunks) } if original_data_source['type' ] == 'personal_consumption' : if 'date_range' in chunk: chunk_metadata['start_date' ] = chunk['date_range' ][0 ] chunk_metadata['end_date' ] = chunk['date_range' ][1 ] if 'categories' in chunk: chunk_metadata['categories' ] = chunk['categories' ] elif original_data_source['type' ] == 'business_data' : if 'financial_period' in chunk: chunk_metadata['period' ] = chunk['financial_period' ] if 'report_type' in chunk: chunk_metadata['report_type' ] = chunk['report_type' ] elif original_data_source['type' ] == 'expert_case' : if 'section_title' in chunk: chunk_metadata['section_title' ] = chunk['section_title' ] if 'entities' in chunk: chunk_metadata['entities' ] = chunk['entities' ] metadata.append(chunk_metadata) return metadata
时间属性与过滤标签
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 def enrich_metadata_with_filters (metadata, analysis_results ): enriched_metadata = [] for item in metadata: enriched_item = item.copy() if 'creation_date' in item: import datetime now = datetime.datetime.now() creation_date = item['creation_date' ] if isinstance (creation_date, datetime.datetime): age_days = (now - creation_date).days if age_days < 30 : enriched_item['time_relevance' ] = 'very_recent' elif age_days < 90 : enriched_item['time_relevance' ] = 'recent' elif age_days < 365 : enriched_item['time_relevance' ] = 'within_year' else : enriched_item['time_relevance' ] = 'historical' if item['source_type' ] == 'expert_case' : chunk_id = item['chunk_id' ] if chunk_id in analysis_results: enriched_item['content_type' ] = analysis_results[chunk_id]['content_type' ] enriched_item['sentiment' ] = analysis_results[chunk_id]['sentiment' ] enriched_item['complexity' ] = analysis_results[chunk_id]['complexity' ] enriched_metadata.append(enriched_item) return enriched_metadata
4.4 向量数据存储
混合存储策略
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 def store_processed_data (chunks, embeddings, metadata, storage_config ): assert len (chunks) == len (embeddings['primary' ]) == len (metadata), "Data length mismatch" vector_db = initialize_vector_db(storage_config['vector_db' ]) document_db = initialize_document_db(storage_config['document_db' ]) vector_records = [] document_records = [] for i, (chunk, embedding, meta) in enumerate (zip (chunks, embeddings['primary' ], metadata)): vector_record = { 'id' : meta['chunk_id' ], 'vector' : embedding, 'metadata' : {k: v for k, v in meta.items() if k != 'chunk_id' } } vector_records.append(vector_record) document_record = { 'id' : meta['chunk_id' ], 'text' : chunk['text' ], 'metadata' : meta, 'embedding_id' : meta['chunk_id' ] } document_records.append(document_record) vector_db.insert_batch(vector_records) document_db.insert_batch(document_records) create_indices(vector_db, document_db) return { 'vector_db_info' : vector_db.get_collection_stats(), 'document_db_info' : document_db.get_collection_stats() }
检索优化配置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 def configure_retrieval_settings (vector_db, application_type='loan_approval' ): if application_type == 'loan_approval' : retrieval_config = { 'search_algorithm' : 'hybrid' , 'sparse_weight' : 0.3 , 'dense_weight' : 0.7 , 'top_k' : 15 , 'reranker_model' : 'BAAI/bge-reranker-large' , 'minimum_relevance_score' : 0.75 , 'default_filters' : { 'time_relevance' : ['very_recent' , 'recent' ] } } elif application_type == 'risk_analysis' : retrieval_config = { 'search_algorithm' : 'dense' , 'top_k' : 25 , 'reranker_model' : 'BAAI/bge-reranker-large' , 'minimum_relevance_score' : 0.65 , 'default_filters' : {} } vector_db.configure_retrieval(retrieval_config) return retrieval_config
5. 数据安全与合规性保障
5.1 隐私保护机制
数据脱敏实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 def apply_data_anonymization (data, sensitivity_level='high' ): anonymized_data = data.copy() pii_fields = { 'id_number' : mask_id_number, 'phone_number' : mask_phone_number, 'email' : mask_email, 'address' : mask_address, 'full_name' : mask_name, 'bank_account' : mask_bank_account } for field, mask_func in pii_fields.items(): if field in anonymized_data: anonymized_data[field] = mask_func(anonymized_data[field], sensitivity_level) text_fields = [field for field in anonymized_data if isinstance (anonymized_data[field], str )] for field in text_fields: anonymized_data[field] = anonymize_text(anonymized_data[field], sensitivity_level) return anonymized_data
差分隐私实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 def apply_differential_privacy (aggregate_data, epsilon=0.1 ): """ 对聚合数据应用差分隐私保护 epsilon: 隐私预算 (较小值提供更强的隐私保护) """ from diffprivlib.tools import mean, std, var dp_results = {} for field, values in aggregate_data.items(): if isinstance (values, list ) and all (isinstance (x, (int , float )) for x in values): dp_results[f'{field} _mean' ] = mean(values, epsilon=epsilon) dp_results[f'{field} _std' ] = std(values, epsilon=epsilon) dp_results[f'{field} _var' ] = var(values, epsilon=epsilon) return dp_results
5.2 合规性审查流程
数据使用合规检查
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 def check_data_compliance (data_source, intended_use ): compliance_status = { 'is_compliant' : True , 'issues' : [], 'recommendations' : [] } if not is_legal_data_source(data_source): compliance_status['is_compliant' ] = False compliance_status['issues' ].append('数据来源不合规' ) compliance_status['recommendations' ].append('仅使用合法授权的数据来源' ) if not is_purpose_compliant(intended_use, data_source): compliance_status['is_compliant' ] = False compliance_status['issues' ].append('数据使用目的与用户授权不符' ) compliance_status['recommendations' ].append('获取明确的数据使用授权' ) if data_source.get('type' ) == 'relatives_info' : relatives_compliance = check_relatives_data_compliance(data_source, intended_use) if not relatives_compliance['is_compliant' ]: compliance_status['is_compliant' ] = False compliance_status['issues' ].extend(relatives_compliance['issues' ]) compliance_status['recommendations' ].extend(relatives_compliance['recommendations' ]) compliance_status['recommendations' ].append('仅使用作为紧急联系人的基本联系信息,禁止用于信用评估' ) return compliance_status
数据访问控制
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 def apply_access_controls (processed_data, compliance_status ): if not compliance_status['is_compliant' ]: restricted_data = apply_strict_restrictions(processed_data, compliance_status['issues' ]) log_access_restrictions(restricted_data, compliance_status) return restricted_data else : protected_data = add_minimal_access_controls(processed_data) protected_data = add_usage_tracking(protected_data) return protected_data
五、风险评估引擎
多维度风险指标体系
信用风险指标
信用评分与历史
还款记录分析
违约概率模型
财务风险指标
现金流健康度
偿债能力比率
盈利能力指标
经营效率指标
市场与行业风险指标
行业景气指数
市场竞争格局
宏观经济影响因素
运营风险指标
经营稳定性评估
管理团队分析
业务模式风险评估
综合风险评分计算
多指标加权模型
机器学习综合评分
LLM辅助风险综合评价
风险模型集成
传统风险模型
逻辑回归信用模型
决策树风险分类
随机森林风险预测
基于LLM的风险分析
多特征关联性分析
非结构化数据风险识别
定性因素风险判断
混合模型决策机制
模型权重动态调整
风险评级与置信度估计
异常检测与人工介入触发
风险评估流程
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 sequenceDiagram 参与者 信贷员 参与者 系统 参与者 风控审核 信贷员->>系统: 提交贷款申请 系统->>系统: 数据收集与预处理 系统->>系统: 基础风险指标计算 par 并行风险评估 系统->>系统: 信用风险评估 系统->>系统: 财务风险评估 系统->>系统: 市场风险评估 系统->>系统: 运营风险评估 end 系统->>系统: 综合风险评分生成 系统->>系统: 风险解释生成 alt 常规风险案例 系统->>信贷员: 返回风险评估报告 else 异常或高风险案例 系统->>风控审核: 转交人工审核 风控审核->>系统: 审核结果输入 系统->>信贷员: 返回风险评估报告 end
六、LangGraph协作机制
工作流定义
系统基于LangGraph构建的协作工作流包含以下核心元素:
节点定义
每个Agent作为一个功能节点
定义节点输入输出接口
设置节点处理逻辑与条件
边与流转控制
定义节点间信息传递规则
设置条件分支与循环机制
错误处理与回退路径
状态管理
全局评估流程状态追踪
中间结果缓存与恢复
多轮交互状态保持
代码示例: 核心工作流定义
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 from langchain.graphs import StateGraphfrom langchain.prompts import ChatPromptTemplatefrom langchain.chat_models import ChatOpenAIllm = ChatOpenAI(model="gpt-4" ) workflow = StateGraph(name="贷款风险评估" ) coordinator_node = workflow.add_node("coordinator" , coordinator_agent) data_acquisition_node = workflow.add_node("data_acquisition" , data_acquisition_agent) credit_analysis_node = workflow.add_node("credit_analysis" , credit_analysis_agent) financial_analysis_node = workflow.add_node("financial_analysis" , financial_analysis_agent) market_analysis_node = workflow.add_node("market_analysis" , market_analysis_agent) fraud_detection_node = workflow.add_node("fraud_detection" , fraud_detection_agent) compliance_node = workflow.add_node("compliance" , compliance_agent) decision_node = workflow.add_node("decision_synthesis" , decision_synthesis_agent) communication_node = workflow.add_node("communication" , communication_agent) workflow.add_edge(coordinator_node, data_acquisition_node) workflow.add_conditional_edges( data_acquisition_node, lambda x: "data_complete" if x["data_status" ] == "complete" else "data_incomplete" , { "data_complete" : [credit_analysis_node, financial_analysis_node, market_analysis_node, fraud_detection_node], "data_incomplete" : coordinator_node } ) for node in [credit_analysis_node, financial_analysis_node, market_analysis_node, fraud_detection_node]: workflow.add_edge(node, compliance_node) workflow.add_edge(compliance_node, decision_node) workflow.add_edge(decision_node, communication_node) workflow.set_entry_point(coordinator_node) workflow.set_finish_point(communication_node) app = workflow.compile ()
并行处理与同步机制
并行分析策略
信用、财务、市场等分析并行执行
采用"fork-join"模式进行结果汇总
支持分析依赖性管理与优先级排序
同步点设计
关键决策点强制同步
中间结果共享机制
冲突检测与解决策略
异常处理机制
Agent失败重试策略
降级处理路径
人工介入触发条件
七、LLM应用策略
模型选择策略
多层级模型架构
基础任务:Qwen-Max或国产替代模型
复杂推理:GPT-4或等效高性能模型
特定功能:专业微调模型
动态模型选择
基于任务复杂度选择模型
考虑成本与性能平衡
支持模型回退机制
Prompt工程最佳实践
角色与指令定义
明确Agent角色和任务边界
提供详细操作指南和评估标准
设置输出格式和质量要求
情境化提示设计
包含相关背景信息和前置知识
预设任务流程和决策框架
提供示例输出引导模型行为
去偏策略
强调公平评估和避免歧视
设置多角度考量要求
引入交叉验证机制
示例: 财务分析Agent提示模板
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 你是一位专业的小企业财务分析专家,负责评估贷款申请企业的财务健康状况。 现在你需要分析以下企业财务数据,并生成财务风险评估报告。 企业基本信息: {business_info} 财务数据: {financial_data} 行业标准参考: {industry_benchmarks} 评估要求: 1. 分析关键财务比率(包括但不限于流动比率、速动比率、资产负债率、利息保障倍数) 2. 评估企业现金流状况和趋势 3. 分析盈利能力和可持续性 4. 与行业标准进行对比 5. 识别财务风险点和异常指标 6. 评估企业偿债能力和财务弹性 7. 给出财务风险等级(低、中、高)和详细理由 输出格式: - 结构化JSON格式,包含各项指标评估和总体评价 - 每项评估必须包含数值分析和定性解释 - 必须包含风险等级和关键风险因素列表 避免: - 不要仅根据单一指标做出结论 - 不要忽略行业特性和企业发展阶段 - 不要使用未提供的信息进行假设 - 必须客观公正,避免任何形式的偏见
八、RAG应用方案
应用场景映射
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 +-------------------------+------------------------+---------------------+ | 应用场景 | RAG功能 | 关键优化点 | +-------------------------+------------------------+---------------------+ | 政策法规查询 | 准确定位相关法规条例 | 关键词与向量混合检索 | | | 解释应用于具体案例 | 内容重排与合规验证 | +-------------------------+------------------------+---------------------+ | 行业风险分析 | 提取行业特定风险因素 | 多类型文档整合能力 | | | 关联市场趋势数据 | 时效性内容优先展示 | +-------------------------+------------------------+---------------------+ | 案例参考与决策支持 | 查找相似案例的处理方式 | 相似度算法优化 | | | 提供决策依据与解释 | 公平性和合规性保障 | +-------------------------+------------------------+---------------------+ | 异常情况处理指南 | 识别异常模式并提供处理 | 多路径检索策略 | | | 方案 | 异常情况分类精度 | +-------------------------+------------------------+---------------------+ | 风险指标解释 | 生成易理解的指标解释 | 内容简化与通俗化 | | | 提供改善建议 | 术语释义自动增强 | +-------------------------+------------------------+---------------------+
RAG实现流程
数据准备
收集相关政策、法规、行业分析报告
整理历史案例库和决策记录
制作专业术语解释文档和评估标准说明
知识库构建
数据清洗与格式标准化
文档分块与多向量索引创建
元数据标注与分类系统建立
检索引擎实现
查询理解与改写模块开发
混合检索策略实现
结果重排与过滤机制构建
结果合成与应用
检索内容与当前任务整合
基于检索增强提示工程
结果验证与引用追踪
代码示例: RAG检索增强处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 from langchain.retrievers import ContextualCompressionRetrieverfrom langchain.retrievers.document_compressors import LLMChainExtractorfrom langchain.retrievers.multi_query import MultiQueryRetrieverfrom langchain.retrievers import BM25Retriever, EnsembleRetrieverfrom langchain.chat_models import ChatOpenAIllm = ChatOpenAI(model="gpt-4" ) vector_retriever = vectordb.as_retriever( search_type="similarity_score_threshold" , search_kwargs={"k" : 6 , "score_threshold" : 0.5 } ) bm25_retriever = BM25Retriever.from_documents( documents, preprocess_func=lambda x: x.page_content ) ensemble_retriever = EnsembleRetriever( retrievers=[vector_retriever, bm25_retriever], weights=[0.7 , 0.3 ] ) multi_query_retriever = MultiQueryRetriever.from_llm( retriever=ensemble_retriever, llm=llm ) compressor = LLMChainExtractor.from_llm(llm) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=multi_query_retriever ) def retrieve_enhanced_context (query, business_context ): enhanced_query = f""" 以下是关于一家小企业贷款申请的查询,企业背景: {business_context} 原始查询: {query} """ docs = compression_retriever.get_relevant_documents(enhanced_query) processed_docs = [] for doc in docs: processed_docs.append({ "content" : doc.page_content, "source" : doc.metadata.get("source" , "未知" ), "relevance" : doc.metadata.get("score" , 0.0 ), "date" : doc.metadata.get("date" , "未知" ) }) processed_docs = sorted (processed_docs, key=lambda x: x["relevance" ], reverse=True ) return processed_docs